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ABSTRACT 
 
Image fusion of registered images of night scenery that are obtained from cameras tuned 
to different bandwidths will be a significant component of future night vision devices. In 
this article, we describe a new algorithm for such multispectral image fusion. The 
algorithm performs gray scale image fusion using a method based on principal 
components. The approach can be easily used for any number of bandwidths. We have 
provided examples where the algorithm was used to fuse a intensified low light visible 
image with another image obtained from a single Forward Looking Infrared (FLIR) 
camera. The algorithm may be implemented readily in hardware for use in night vision 
devices, as an important aid to surveillance and navigation in total darkness. 
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INTRODUCTION 
 
The ability to detect targets and obstructions  in total darkness is of great importance for 
vehicle navigation as well as in surveillance and monitoring applications. In military and 
civilian applications, night vision devices are frequently used to assist operators’ night 
vision.  Night vision images are usually either low light images obtained via a CCD 
camera that are intensified by means of an image intensifier tube, or infrared images 
obtained by Forward Looking Infrared (FLIR) cameras. Although both sensors are good 
night vision devices, they do not capture all the available information about the scenery. 
For instance, warm objects, such as humans and some man-made objects are not easily 
detected through low-light-visible sensor; however they can be easily detected through an 
infrared sensor. On the other hand, infrared cameras cannot sense certain finer details 
about the scenery (such as leaves or grass in natural scenes), and one has to rely on 
visible imagery to be able to see them. As a consequence, military vessels are often 
equipped with two or more cameras operating at different bandwidths. Simultaneous 
viewing of multiple images is a cumbersome task, and it is of little surprise that there has 
been a major Department of Defense research effort to develop algorithms to merge the 
images obtained at various bandwidths and obtain single composite images that contain 
all the information available at the various bandwidths. This operation, known as image 
fusion has begun to play a very important role in surveillance, monitoring and navigation. 
It allows the user to view a single composite image that contains all the information 
gathered from various sources. This obviates the need for separate displays for each 
sensor.  
 

With the recent advances in digital image processing technology, it is now 
possible to implement computer algorithms for all sorts of imaging applications. 
Implementing compact devices for image fusion of these multispectral images is feasible, 
and image fusion can now be used for a variety of non-military applications, including in 
the area of transportation. Traffic surveillance centers can easily be equipped with such 
devices, as can individual vehicles, making navigation in darkness a much easier task.  
 

Mere superposition of all input images does not produce good fused images. This 
is because, for n sensors, a feature that is visible through only a single input camera and 
not through the others, gets attenuated by a factor of n in the output image. Therefore a 
more elaborate scheme is necessary. A few algorithms for multispectral image fusion 
have been proposed. A method that is motivated largely by the vertebrate early visual 
system was developed recently (1,2). In vertebrate vision, color contrast takes place at the 
inner layers of the retina, where the light sensed by the cones (the photosensitive cells 
that pick color information, namely red, blue and green) undergo a process called 
opponent-processing. Opponent processing helps explain many aspects of human color 
perception, such as why blue stands out in a yellow background and red in a green one. 
The image fusion algorithm in (1,2) imitates this process in order to obtain maximum 
color contrast between infrared and low light visible images. 

 
Another method that was proposed recently simply superimposes imagery at three 

different bandwidths as the red, green and blue components of the fused image (3,4). 



Das, S., Zhang, Y-L, Krebs, W.K. (2000).  Color night vision for navigation and surveillance, In J. Sutton 
and S.C. Kak (Eds), Proceedings of the Fifth Joint Conference on Information Sciences, Atlantic City, NJ, 
February 28th 

 

Color enhancement is then obtained by performing a linear translation of the color pixels 
to maximize the color contrast.  

   
This article proposes a new method of image fusion. The proposed algorithm does 

gray level image fusion by examining the contrast of each input image and performing a 
weighted combination. The algorithm carries out operations that are highly localized and 
therefore the proposed method may be realized physically for real- time applications. 
 
 
OUTLINE OF THE PROPOSED METHOD 
 
Consider n dimensional data in the form of m-vectors x1, x2 , ... xn. In order to transform 
this data into a single m-vector y, an n-vector q is selected. The vector y is then obtained 
as, 

yq = [x1 x2
  ... xn

 ] ⋅q.                                                  (1) 
 
The subscript q has been added to the y to explicitly show its dependence on it. Let the 
variance the single vector y be denoted by σ2(yq). The (first) principal component is that 
n-vector p along whose direction, the variance σ2(yp) is maximized, i.e. ∀q, σ2(yp) ≥ 
σ2(yq). The principal component p can easily be computed as the eigenvector of the 
correlation matrix E[(x-E(x))⋅(x-E(x)T] having the largest eigenvalue. Although the 
principal component can be computed in a straightforward manner, a neural network 
approach based algorithm would be preferred for a hardware implementation. 
 
 The monochrome fusion algorithm breaks up the entire images into smaller 
circular regions or 'partitions' and performs image fusion in a region-wise manner. Fusion 
is done based on the assumption that the variance of the image within any localized 
partition is a measure of the information content of the partition. This assumption is valid 
when the image is noise free and when the partitions are neither too large not too small. 
We already mentioned that the input images often carry complementary information, e.g., 
some features in the scenery are visible through one image while some others through 
another. Therefore, within too large a partition too many features may get included, and 
as a result, images would show no great difference in information content. In a similar 
manner, features may not be seen through partitions that are too small, and consequently 
the algorithm may interpret this as an absence of descriptive features about the scene in 
the image. In other words, the size of each partition plays an important role in 
determining the quality of the fused image, and needs to be selected judiciously. 
Henceforth, we shall treat an image as a two-dimensional array of pixels, and the pixel in 
the ith row and the jth column shall be denoted by I(i, j).  Using this notation, we define 
the (p, q)th partition of an image I as follows, 
  

RI(p, q) = {I(i, j)|(αp - i)2 + (αq - j) 2 < α2 },                                (2) 
 
where α, an integer, is the region size. Clearly the indices p and q can acquire values in 
the range [1, r/α] and [1, c/α] respectively where r×c is the image size. It may be noted 
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from the above equation that the regions are overlapping and that the partitioning process 
covers the entire image. 
 
 In order to determine the localized average pixel values in the images, the infrared 
(IR) and visible images, IIR and IVIS are smoothed by means of convolution with a 
Gaussian function. The smoothed images are given by, 
 

SIR = IIR ⊗ exp[-(x2 + y2)/σ2]                                            (3a) 
 
and 
 

SVIS = IVIS ⊗ exp[-(x2 + y2)/σ2],                                         (3b) 
 
where ⊗ is the convolution operation. The width σ of the Gaussian function is closely 
related to the region size. The deviations from the smoothed images are computed as, 
 

DIR = IIR - SIR                                                         (4a) 
 
and 
 

DVIS = IVIS - SVIS.                                                     (4b) 
 
Next, the principal component of each partition RDIR and RDVIS of the arrays DIR and DVIS 
are computed. The (p, q)th principal component shall be denoted as p(p, q). Since the data 
is bivariate, p shall have two components, pIR and pVIS. Within each partition, p shall be 
appropriately biased towards the image with a higher information content. Therefore, 
performing a weighted combination of the IR and visible images using p would lead to a 
fused image with a high information content. However, before this operation, an r×c 
array of weights W has to be computed from p. This is done in a straightforward manner 
by mapping the r/α×c/α of principal components to an r×c array of weights w' and then 
convolving the resulting array with a Gaussian to ensure that the weight variations 
transition in a smooth manner to obtain the final weight array w, 
 

w'IR (i, j) = pIR(i/α, j/α),                                             (5a) 
 

w'VIS (i, j) = pVIS(i/α, j/α),                                          (5b) 
 
and 
 

wIR = w'IR ⊗ exp[-(x2 + y2)/σ2]                                       (6a) 
 

wVIS = w'VIS ⊗ exp[-(x2 + y2)/σ2].                                   (6b) 
 
Image fusion is carried out as the final step of the monochrome fusion process to obtain 
the fused monochrome image M. This image is composed by averaging the smoothed 
input images and adding the weighted, normalized sum of the deviations. 



Das, S., Zhang, Y-L, Krebs, W.K. (2000).  Color night vision for navigation and surveillance, In J. Sutton 
and S.C. Kak (Eds), Proceedings of the Fifth Joint Conference on Information Sciences, Atlantic City, NJ, 
February 28th 

 

 
M(i,j)=?[SIR(i,j)+SVIS(i,j)] + [DIR(i,j)⋅wIR(i,j)+DVIS(i,j)⋅wVIS(i,j)]/[wIR(i,j)+wVIS(i,j)].  (7) 

 
In the above equation, the first term in the right hand side is the average of the smoothed 
IR and visible images. This provides the 'background' image to which the weighted 
deviations (the information) are added as the second term. 
 
 
RESULTS AND DISCUSSION 
 

In Figures 1 and 2, we show examples of the performance of the monochrome 
fusion stage. For the sake of comparison, we also show the image that would be obtained 
from direct superposition of the input IR and visible images (obtained by averaging the 
two input images). In order to illustrate more directly the effect of using principal 
components, we also have provided the image that would be obtained if equal weights 
were assigned to the IR and visible inputs, that is if wIR and wVIS were identical. This 
image appears more contrast enhanced than the one obtained by superposition because 
adding the deviations to the smoothed image in Equation (7) has the equivalent effect of 
high-pass filtering the image to a certain extent. 
 

At the present time, we are exploring ways to reduce the computational overhead 
of having to compute the principal components separately for each still frame in moving 
imagery by using motion detection algorithms. The weights obtained from the principal 
component for a previous frame, then may be translated in the direction of motion. We 
are also actively looking at using the independent component analysis, a recently 
developed signal processing technique similar to principal components, for image fusion. 
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Figure 1.  Images obtained from monochrome fusion. Top row: Left - Visible image; 
Right - Infrared Image; Middle row: Left - Image that would be obtained from 
superposition of the visible and infrared images; Right - The normalized weight assigned 
to the input images (w). Darker regions are where the visible image is assigned more 
weight as a result of more information content; Bottom row: Left - Result of image fusion 
when equal weights are assigned to each input; Right - Result of the monochrome image 
fusion algorithm (M). 
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Figure 2.  Images obtained from monochrome fusion. Top row: Left - Visible image; 
Right - Infrared Image; Middle row: Left - Image that would be obtained from 
superposition of the visible and infrared images; Right - The normalized weight assigned 
to the input images (w). Darker regions are where the visible image is assigned more 
weight as a result of more information content; Bottom row: Left - Result of image fusion 
when equal weights are assigned to each input; Right - Result of the monochrome image 
fusion algorithm (M). 
 
 
 
 


